Probability Interpretations

- Theoretical. Where P comes from mathematical model or logical reasoning. (pp. 193-4)
- Example: P(‘heads’) = exactly $1 / 2$
- Empirical. Where P comes is the long-run relative frequency of an event. (p. 192)
- Example: P(student graduates) $=1 / 400$
- Subjective. Where P is a personal degree of belief. (p. 194)
- Example: P(I can cross street safely) $=0.99$

Complement Rule

- The probability that an event occurs is 1 minus the probability that it doesn't occur. (p. 195)

$$
\mathrm{P}(\mathrm{~A})=1-\mathrm{P}(\sim \mathrm{~A}) \text { or } \mathrm{P}(\mathrm{~A})+\mathrm{P}(\sim \mathrm{~A})=1
$$

[^0]
Example: Complement Rule

$$
\begin{aligned}
& \mathrm{P}(\text { heads })=1-\mathrm{P}(\text { tails }) \\
& \mathrm{P}(\text { heads })+\mathrm{P}(\text { tails })=1
\end{aligned}
$$

General Addition Rule

For any two events A and B, the probability of A or B occurring is:

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-P(\mathrm{~A} \text { and } \mathrm{B}) \text {. }
$$

Example: General Addition Rule

Flip a coin twice. Probability of 2 heads:

$$
\mathrm{P}(\text { heads, heads })=0.5+0.5-0.25=0.75
$$

Mutually Exclusive Events

- If A and B are mutually exclusive (disjoint), then if A occurs, B cannot occur. (p. 196)

Example: Mutually Exclusive Events

- Being registered as Republican vs. Democrat vs. Independent are mutually exclusive events.
- Freshman, Sophomore, Junior, Senior
- CA driver’s license lists gender as M or F
- Rolling a ' 1 ', ‘ 2 ', ‘ 3 ', ‘ 4 ', ‘ 5 ', or ' 6 ' on fair die

Addition Rule for Mutually Exclusive Events

If A and B are mutually exclusive events, then the probability of A or B is:

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

p. 196

Example: Addition Rule for Mutually Exclusive Events

Probability of rolling a ' 1 ' or a ' 2 ' on a fair die:

$$
1 / 6+1 / 6=1 / 3
$$

General Multiplication Rule

- For any two events (A, B), the probability of A and B is:

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
$$

p. 202

Example: General Multiplication Rule

- Probability of being a Democrat and likes president:

$$
\begin{aligned}
& =\mathrm{P}(\text { Democrat }) \times \mathrm{P}(\text { likes president } \mid \text { Democrat }) \\
& =0.50 \times 0.80=0.40
\end{aligned}
$$

Independent Events

- Events are independent if one event's occurring doesn't change the probability of the other's occurring.

If A and B are independent, then:

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B} \mid \sim \mathrm{A})=\mathrm{P}(\mathrm{~B})
$$

p. 202

Example: Independent Events

- Getting 'heads’ on one coin clip independent of getting 'heads’ on another.
- Rolling a ' 1 ' on a fair die independent of getting 'heads' on a coin clip.

$$
\mathrm{P}\left({ }^{\prime} 1^{\prime} \mid \text { heads }\right)=\mathrm{P}\left({ }^{\prime} 1^{\prime} \mid \text { tails }\right)=\mathrm{P}\left({ }^{\prime} 1^{\prime}\right)
$$

Multiplication Rule for Independent Events

- If A and B are independent, the probability of A and B is:

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})
$$

p. 202

Example: Multiplication Rule for Independent Events

- Probability of getting 'heads’ on both 1st and 2nd of two coin flips:
$\mathrm{P}($ heads, heads $)=\mathrm{P}($ heads $) \times \mathrm{P}($ heads $)=0.5 \times 0.5=0.25$

Conditional Probability

- The conditional probability $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is the probability of B given that A occurs.

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{~A})}
$$

pp. 202-203

Example: Conditional Probability

Table 1. Purchase Type by Gender

	Utility Lighting	Fashion Lighting	Total
Men	40	20	60
Women	10	30	40
Total	50	50	100

$\mathrm{P}($ male customer \mid buys utility lighting $)=0.40 / 0.50=0.80$.

[^0]: The set \mathbf{A} and its complement
 $\mathbf{A}^{\text {C }}$. Together, they make up
 the entire sample space \mathbf{S}.

